Quadratic Equations Module-1/3 Worsheet-1

Choose the Correct Answer:

1. Which of the following is not a quadratic equation?

	A) $x^2 + \frac{1}{x} = 1, x \neq 0$	B) $x + \frac{1}{x} = 2, x \neq 0$	C) $x^2 - 6x - 4 = 0$	D) $x^2 - 8 = 0$
2	Which of the following is a quadratic equation?			
	A) $x^2 + 2x + 1 = (4 - x)^2 + 3$	B) $-2x^2 =$	C) $(k+1)x^2 + \frac{3}{2}x = 7$,	D) $x^3 - x^2 =$
		$(5-x)(2x-\frac{2}{5})$	where $k = -1$	$(x-1)^3$
3	If $\frac{1}{2}$ is a root of the equation $x^2 + kx - \frac{5}{4} = 0$, then the value of k is			
	A) 2	B) -2	C) $\frac{1}{4}$	$D)\frac{1}{2}$
4	For what value of k will $\frac{7}{3}$ be a root of the equation $3x^2 - 13x - k = 0$?			
	A) 14	B) $\frac{3}{7}$	C) $-\frac{7}{2}$	D) -14
5	If $(x - a)$ is one of the factors of the polynomial $ax^2 + bx + c$, then one of the roots of $ax^2 + bx$			
	c = 0 is			
	A) 1	B) c	C) a	D) none of these
	Very Short Answer Type			
6	Which of the following is not a quadratic equation?			

i $2(x-1)^2 = 4x^2 - 2x + 1$

1.
$$2(x-1)^2 = 4x^2 - 2x + \frac{1}{2}$$

ii.
$$2x - x^2 = x^2 + 5$$

7 If
$$x = 2$$
 is a solution of the equation $x^2 - 5x + 6k = 0$, then the value of k is _____

8 Check whether the following are quadratic equations:

i.
$$(x - 2) (x+5) = (x - 3) (x + 4) + x^2$$

ii.
$$x^2 - 3x + 5 = (x + 5)^2$$

- 9 Is x = -2 a solution of the equation $x^2 2x + 8 = 0$?
- 10 If 2 is a root of the equation $x^2 + bx + 12 = 0$, find the value of b
- 11 A train travels 360km at a uniform speed. If the speed had been 5km/h. More it would have taken 1 hour less for the same journey. Form quadratic equation to find the speed of the train.
- 12 The product of two consecutive even integers is 528. Represent the situation in the form of a quadratic equation.